来源:杏彩体育官网 发布时间: 2024-12-23 10:15:28 点击量:1
流程制造业包括钢铁、石化、建材、化工、有色金属等工业门类,是由相关的但又异质异构的装备组成的生产过程集群。经过数十年的发展,我国流程制造业的工艺技术水平大幅提升,基本形成了世界上门类最齐全、规模最庞大的流程制造业体系。然而,与制造强国相比,我国流程制造业存在产能过剩较为严重、高端制造能力发展滞后、安全环保水平有待提升等问题,未来发展还面临更为严峻的资源、市场、环保、竞争等重大挑战,迫切需要加快实施转型升级和提质增效。
中国工程院袁晴棠院士、殷瑞钰院士、曹湘洪院士等科研人员在中国工程院院刊《中国工程科学》撰文,重点研究了流程制造业制造流程的本构特征、耗散结构、耗散过程和建模机理等物理本体问题,以石化工业和钢铁工业为主要研究对象,将智能化与信息物理系统的概念进行对接,研究如何实现全厂性动态运行、管理、服务等过程的自感知、自学习、自决策、自执行、自适应,构建基于信息物理系统的智能化工厂。据此,文章提出了面向2035年的流程制造业智能化发展的目标、特征和路径,并从机制建设、科技项目、财政支撑、技术研发、知识产权、国际交流等方面提出了对策建议。
来源:面向2035的流程制造业智能化目标、特征和路径战略研究[J].中国工程科学,2020,22(3):148-156.
作为我国实体经济的主体,制造业是现代化经济体系的重要组成部分,主要分为流程制造业和离散型制造业。
流程制造业包括钢铁、石化、建材、化工、有色金属等工业门类,是由相关的但又异质异构的装备组成的生产过程集群。
流程制造业的运行过程通常伴随着物理化学变化,且动态非线性耦合也是重要特征之一,因机理复杂而难以数字化、难以建立数学模型;此外,原料状态复杂、生产工况波动大,相关过程的工艺参数需要能够实时重新设定。
经过数十年的发展,我国流程制造业的工艺技术水平大幅提升,整体实力快速增长,国际影响力显著提高,基本形成了世界上门类最齐全、规模最庞大的流程制造业体系。然而,与制造强国相比,我国流程制造业存在着资源与能源利用率偏低、产品结构不尽合理、产能过剩较为严重、高端制造能力发展滞后、安全环保水平有待提升等问题;未来发展还面临更为严峻的资源、市场、环保、竞争等重大挑战,迫切需要加快实施转型升级和提质增效。因此,我国流程制造业加快向绿色化和智能化方向发展成为必然。
当前到2035年是我国智能制造发展的关键时期,流程制造业应当抓牢这一历史性机遇,集中优势力量实施重点突破,尽快实现智能制造以支撑经济高质量发展。
国内外智能制造方面的已有研究较多针对离散型制造业的智能化问题,如德国工业4.0等。然而,流程制造业的智能化不同于离散型制造业,流程型智能制造的理论与实践仍处于探索过程之中,尚缺乏公认的理论体系和应用案例。对此,本文重点研究流程制造业智能化的本构特征、耗散结构、耗散过程和建模机理等物理本体问题,提出面向2035年的流程制造业智能化发展的目标、特征和路径,以期为我国流程制造业的创新发展提供理论参考。
对于流程制造业而言,不同行业的制造流程既有共性特征,又有个性特征,因而内在的动态运行物理本质和智能化发展的基本特征较为明显。
流程型制造流程是由原子/分子层级过程、工序/装置层级过程、流程/工厂层级过程互相嵌套组合,通过非线性相互作用–动态耦合、网络化、结构化等集成协同机制构建而成的,其本质是整体流动和转化,体现着整体论思维和还原论思维的结合、并以整体集成思维为导向。流程型制造流程由异质异构的相关工序构成,以不可拆分的制造流程整体协同运行的方式存在,适合于连续且批量化的生产,这是其共性特征。例如,流程制造企业的生产流程表现为连续或准连续方式,动态运行的要素有“流”“流程网络”“运行程序”。
不同行业的生产流程存在差异,工艺过程加工对象各不相同,因而具有各自的个性特征。例如,不同行业“流”的表现形式有差异,有的制造流程的“流”以“连续流”为主、“间歇流”为辅,而有的表现形式则相反;不同行业“流”的相组成、物理特征和工况也有所不同。对于流程制造业而言,在时–空边界内会发生物质–能量的流动/流变和物理化学变化,运行方式较为复杂,相关过程难以有确定解,难以数字化,由此引发的信息也有所不同。因此,信息流、信息流网络的特征是有区别的,应注重数字系统和物理系统的有机结合。
流程型制造流程的动态运行过程,其物理本质可以概括为:物质流在能量流的驱动和作用下,按照设定的“程序”,沿着特定的“流程网络”作动态–有序的运行,由此实现多目标优化。
不同行业加工的物质流组分是不同的,能量流组成也随之不同,但都是不同形式的“流”在相应的“流程网络”中按“程序”运行。流程型制造流程的动态运行过程表现为开放性、非平衡性,属于在一个耗散结构内运动的耗散过程。为了优化流程运行的耗散过程,流程系统的运行状态应是动态–有序、协同–连续/准连续的。主导形成流程结构的“序”以及流程运行的“序”来源于制造流程内部结构及其相关信息,制造流程的自组织性来自于流程内相关工序/装置的功能序、空间序和时间序的合理配置与集成组合。制造流程自组织力的强弱取决于制造流程系统内工序功能集的解析–优化、工序之间相互作用关系集的协同–优化、流程内工序集合的重构–优化。
流程型制造业智能制造的核心目标在于:在生产经营中显著提高应对市场的灵活性,在生产过程中显著改善效率、安全和清洁化,为了显著提高企业的经济效益来研发生产经营全过程的数字物理融合系统。
相应特征包括:具有物质流网络、能量流网络、信息流网络“三网融合与协同”的信息物理系统;具备全面感知、智能决策、精准执行、深度服务等功能;实际涵盖自感知、自学习、自决策、自执行、自适应等具体特征;涉及动态–精准设计、协同–优化运行、高效一体化管理、安全–低库存供应链、差异化服务等。
作为我国制造业的重要组成部分,以钢铁工业、石化工业为代表的流程制造业,既是我国经济社会发展的支柱产业,又是实体经济的基石,相应产值约占全国规模以上工业总产值的47%。我国流程制造业虽然总体规模和综合实力显著提升,但与世界先进水平相比,在竞争优势、技术能力、质量品牌、环境友好等方面还存在一定程度的差距,结构性供需失衡问题也较为突出。
当前,移动互联网、大数据、云计算、物联网、第五代移动通信(5G)、区块链等新一代信息技术不断取得突破,特别是新一代人工智能(AI)技术与先进制造技术深度融合所形成的新一代智能制造技术,已成为新一轮工业的核心驱动力。我国经济已由高速增长阶段转向高质量发展阶段,正处在转变发展方式、优化经济结构、转换增长动力的攻关期,迫切需要新一代AI等重大创新添薪续力。
“十九大”报告指出,要加快发展先进制造业,加快建设制造强国。推动流程制造业智能化发展是顺应制造强国战略的必然选择,也是适应新时代流程制造业发展数字化、网络化、智能化趋势,推进我国供给侧结构性改革、支撑经济高质量发展的重要途径。
流程制造业智能化发展要以“理论突破、标准引领,总体规划、顶层设计,创新驱动、转型升级,试点示范、稳步推进”为原则,以深化供给侧结构性改革为主线,以智能化工厂为主攻方向,推动信息技术与先进制造技术深度融合发展,推进流程制造业的技术研发智能化、工程设计智能化、生产过程智能化、经营管理智能化、供应链与服务智能化;突破制约流程制造业“两化”深度融合的关键智能技术瓶颈和重大智能装备短板,构建新型现代化流程制造智能化工厂和运营模式,推动我国流程制造业实施质量变革、效率变革、动力变革,实现由大到强的发展方式重大转变。
2025年,全国重点流程制造企业普及数字化、网络化制造并开展深度应用,部分领域试点示范流程制造智能化工厂应用,在取得显著成效的基础上进一步扩大应用范围,使我国进入世界流程制造业智能制造的先进行列。在钢铁工业方面,建立覆盖不同流程结构的钢铁企业示范智能化工厂,应用水平达到世界先进,示范企业实现流程数字化设计、生产智能化管控、企业精益化运营、系统开放性架构。在石化工业方面,推广应用数字化、网络化智能工厂,启动数字化、网络化、智能化智能工厂试点示范,进入世界智能制造先进行列。
2035年,数字化、网络化、智能化智能工厂完成试点示范并开始推广应用,使我国流程制造业实现转型升级,部分企业进入世界领先行列,为2050年我国建成世界一流的制造强国奠定坚实基础。在钢铁工业方面,面向钢铁企业推广应用智能化技术和新模式,全行业智能化水平获得根本性提升,整体达到世界先进水平,部分企业达到世界领先水平。在石化工业方面,推广普及数字化、网络化、智能化石化工厂,促进我国石化工业实现整体转型升级,智能制造整体达到世界先进水平,部分企业进入世界领先行列。
智能化工厂是流程制造业实现智能化的重要载体。推进流程制造业实现智能化发展,研判并提出发展思路是重点内容,本文针对性提出了钢厂智能化和石化厂智能化的发展思路。
围绕钢铁制造流程中的产品制造、能源转换、废弃物消纳处理与资源化三方面的功能价值提升问题,基于信息物理系统的物质流网络、能量流网络、信息流网络的关联和协同集成方法,将物联网、大数据、云计算、AI等信息技术手段与钢铁制造流程的设计、运行、管理、服务等环节进行深度融合,构建全面感知、智能决策、精准执行、深度服务等功能,用于优化钢铁制造流程结构(尤其是动态运行结构)、保障全流程运行过程中的智能化控制和管理水平提升。
从物理机制来看,相关的系统架构如图1所示,特色在于制造过程管控系统,含过程控制系统(PCS)和“界面”技术;针对生产执行系统(MES)、能源管理系统(EMS)、PCS、企业资源规划系统(ERP),进行一体化的集成构建。其中,与“界面”技术密切相关的PCS技术基础较为薄弱,应作为系统架构研发的重点切入口之一。
钢厂智能制造技术架构如图2所示:数据中心、知识中心、数字孪生共同构成钢厂智能制造的支撑平台,工序优化、界面优化、流程优化成为钢厂智能制造的物理基础,全流程质量管控、一体化计划调度和能源/环保生产协同调配作为全流程动态有序运行的指挥中枢,供应链全局优化与服务链全生命周期管理为企业经营提供新的盈利模式。
钢厂智能化的应用重点在于围绕物质流网络、能量流网络和信息流网络的“三网协同”优化问题,开展数字化工程设计、全流程运行智能化控制、全流程质量管控、一体化计划调度、能源/环保与生产协同调配、供应链与服务链全局优化6个领域的集成优化。
面向石化工业的各种制造模式,覆盖石化生产全产业链,将新一代信息技术与石化生产过程的资源、工艺、设备、环境、人的制造活动进行深度融合,推进工厂横向、纵向和端到端的高度集成,建立全面感知、预测预警、协同优化、智能决策四方面关键能力,以更加精细灵活的方式提高石化厂的运营管理水平,推动制造和商业模式创新。
石化智能制造的基础设施是石化工业互联网平台,相应要素包括数据、模型和应用。这些要素在不同层次上构成了闭环反馈,体现了石化企业内部信息的纵向集成、全产业供应链的横向集成、工程数字化端到端集成。石化智能制造体系架构主要分为统一的数据平台、模型平台、数字空间、应用开发平台等4个层面(见图3)。其中,数据平台包括数据的采集、处理和保存功能,模型平台包括机理、数字、规则的建立,数字空间主要是指以工厂为对象的数字孪生,应用开发平台包括应用的开发、部署和运行。
结合石化工业特点和新一代信息技术优。